
Aspects of Computing and
Software in a HEP experiment

Simona Rolli

2

Simona Rolli
Tufts University

Introduction

• Over the lifetime of CDF II, the needs
of the experiment changed:
 The collaboration decided to rewrite all of our software in C++ ;
 We faced the task of organizing very large amount of data, that

needed to be readily accessible to the whole collaboration
 Some of the GRID concepts did not even exist in 1997;

 We commissioned the detector with new hardware and software
 more than a simple upgrade, more like a new detector

 We finally reached a steady state
 Most of the tasks are now being “automatized” to compensate for

shortage of manpower

Over the past ~12 years I have been
involved in several software projects
while being a member of the CDF
collaboration at FNAL

3

Simona Rolli
Tufts University

Outline of the talk

• A new beginning: from Fortran to C++
 Data handling solutions based on OO databases
 THE CDF Hybrid solution

• Data Access and Analysis
 Standard ntuples and unified analysis tools

• Simulation and Reconstruction
 Trigger Simulation at CDF

 Offline tool
 Online tool

• The Steady state
 Automatic Tools for perfomance and ID calculations

4

Simona Rolli
Tufts University

A new beginning….

At CHEP 1994 a new Verb started spreading in the HEP
community….

One of the results of the conference was the decision in the few
subsequent years on the part of many experiments to write their software
in an object oriented fashion

CDF and D0 found themselves in a frenzy being in the middle of a major
upgrade from Run I to Run II.
After much deliberation CDF reached the following conclusions…..

5

Simona Rolli
Tufts University

CDFII Software Setup

•online systems would be using Java for boards control GUI and Run
Control (C code is mostly used to talk to the boards, it easily
translated in C++ for emulation/simulation);

offline software(simulation and reconstruction) would be totally
written in C++;

The data handling (very large volume of data) would be based on
the use of the ROOT data format coupled to a relational databases to
make up for catalogue functionality (file-based catalogue).

The analysis framework choice would be left to the user (HepTuple
interface)

Eventually a few standard ntuples became the tool of choice for
most of the collaboration physics analysis groups

6

Simona Rolli
Tufts University

Data handling challenges

• Data access questions:
 what event we look at:

 Data
 Calibration and support
 simulation

 how to select events
 what processing steps

needed for event
selection/event analysis

 how many time and how
often data are accessed?

 Which piece of the
events are needed?

Estimated run II needs for CDF/D0

S. Rolli et al. Objectivity WorldView, S. Clara, May 1997

7

Simona Rolli
Tufts University

OODBMS Data handling

• Split the event information in
different parts, residing on different
media, depending on the access
patterns, maintaining associations
 AOD on disk
 ESD on tape
 RAW on tape

• use direct access to access needed
information

• Use an OODBMS as object
manager (off-the-shelf system)

• Possible serious drawbacks when
using serial media (tape)

K. Karr, S. Rolli, K. Sliwa CDF data management in Run-II and Objectivity ODBMS
 CDF/ANAL/CDF/PUBLIC/4201, 1997

Online

Common Filters and
Object

Creation

CDF

Slow Control
Detector

Monitoring “L4”L2/L3

L1

Persistent Object Store
Object Database Management System

Filtering

Simulation Calibrations, Group
Analyses User Analysis

Offline

One of the proposals for CDF was based on the solution being worked out for the
LHC experiments

8

Simona Rolli
Tufts University

CDF Data access and data handling

Tape library
PADS

Disk pool
Interactive
login pool

Look + static area

Production farms

Secondary, tertiary,
user datasets

CDF

50 primary datasets in 8 streams

Data are also kept in an extremely
highly compressed format
(Physics Analysis Data, PAD’s).

The solution CDF adopted was an
hybrid one:
It uses ROOT, an HEP specific data
analysis framework, as its data
format (sequential), but builds an
intermediate layer (Event Data
Model) which allows OO
functionality.

The data handling system makes
use of a relational database to
make up for catalogue functionality
(file-based catalogue).

Data are kept on a tape robot and
spooled on disk upon request.
No direct tape access

9

Simona Rolli
Tufts University

CDF Event Data Model

R. Kennedy, S. Rolli et al. CHEP 2000, Computing in high energy and nuclear physics* pg 442-44.

10

Simona Rolli
Tufts University

Data Analysis Model at CDF

S. Rolli, A. Yagil, May 2001

PADS EVT branches (same file):
e,µ,Met,Jets,TRKQ
Wires,strips,CalData,MuonData
COTQ,SIXQ

NTUPLE Puffer Module

User parameters

EDM

User analysis code

User Ntuple

PADS data files are not directly readable in the ROOT analysis
framework
Data needs to be “puffed” using the EDM intermediate layer
(dictionary description) to be used in an analysis framework

11

Simona Rolli
Tufts University

evtNtuple

COT Tracks

Global info:
Run/evt number
Trigger bits

The PADS Event
information is translated
into ROOT branches:

High Level Objects
Trigger Information
Raw Data Information
Simulated information

The User can add his/her own
branch for specific analysis
needs (derived quantities)

The ntuple is portable outside
of the CDF software
environment (the User
laptop..)

One of the analysis tools used in CDF

http://ncdf70.fnal.gov:8001/talks/eN/eN.html

12

Simona Rolli
Tufts University

Trigger Simulation at CDF

• TRGSim++ is a set of (C++) packages which emulate the L1 and L2 hardware
trigger levels decision steps
 offline tool to calculate rates and efficiencies;
 online monitoring tool for the trigger boards.

• TRGSim++ modules run off detector raw data and produce emulated trigger data identical
to real hardware data.

• Not a time-critical application, more a “static” emulation

• Trigger decision steps: A_C++ modules, organized in
packages:
 CalTrigger
 MuonTrigger
 XFTSim
 SVTSim
 XTRPSim
 L2/L1GlobalTrigger
 TriggerMods
 TriggerObjects Coordination of a group of

about 30 detector experts

S. Rolli et al., Trigger Simulation at CDF - CHEP 2000,Computing in high energy and nuclear physics* p250

13

Simona Rolli
Tufts University

The Simulation Code

The simulation code has to adhere to the AC++ philosophy:
Modules representing functions talk to each other via data structures
(banks -part of the YBOS array, or storable Objects) contained in the
EventRecord.

This is also the only part of the CDF
simulation/reconstruction code
which can reproduce bit by bit the
digital hardware behavior.
It is essentially code that translate in
a higher language the behavior of
the trigger boards.

The challenge is to write code which is modular and allows for as much recycling as
possible of the online boards (C)code.
Another challenge was to get the “hardware” people to write C++ software, providing
them with a general framework and infrastructure - db access for instance.

14

Simona Rolli
Tufts University

Example:The Calorimeter Trigger

L1:
Trigger on electrons, photons,
jets (object triggers),
total event transverse energy
and missing transverse energy
(global triggers)

Object triggers : threshold applied
 to individual towers;
Global triggers : threshold applied
after summing energies from all
towers.

L2 :
cluster finder and isolation sums

15

Simona Rolli
Tufts University

Example: L1 Calo Trigger
class DiracDat {
 private:
 //inputs
 int etin[13];/* the 13 input channels */
 int trin; /* 8 bits of tracking input */
 //outputs
 int output[12];/* the front panel output to DCAS */
 int daq[4]; /* daq[i] i=word */
 int etsum; /* 8 et bits sent to cratesum*/
 int trsum; /* 16 trigger bits sent to cratesum*/
 int slot /* bunch crossing number, slot number */
 int etaux[12]; /* the et out of the aux card */
 int towem[6]; /* the towlat output, 8 bits of em et */
 int lsbhad[6]; /* the towlat outputs for lsbhad(3) */
 int towtot[6]; /* 8 bits of total energy from towlat*/
 ……
}

16

Simona Rolli
Tufts University

DIRAC crates

L1 Dirac boards receive their input from ADMEM (FE boards on the detector):
10 bit word for each trigger tower (15oϕ ×0.2η) for a total of 24x24 towers

Each card processes 6 HAD and 6 EM towers from a quarter of the same wedge in φ).
Therefore each card receive 120 bits from the detector

There are 16 DIRAC cards in each crate
There are 6 DIRAC crates (for 576 Trigger Towers)

There is one Crate Sum board per eight DIRAC
boards. CS receives an 8 bit Sumet and 16 bit
trigger Summary Word from each DIRAC via a
custom backplane

In the code we get the TDC data from the
raw data banks, emulate the ADMEM PMT sums
and weighting with routines and pass the
energies to the Dirac board object, via
the etin array of input channels

17

Simona Rolli
Tufts University

CalTrigger package

CalTriggerData

AbsEvent

CalTriggerDataMaker

StorableObject

TriggerTower

TriggerTowerType

DiracDat

CratesumDat

1

0..*

1

1..*

1..*

1 1

1..*

A_C++ framework:
Event data is passed via an Event Record
between user-written software modules
whose execution is coordinated by the
AC++/Framework package

AppModule

1

1

generates

1

1..*

Detector digitization (ADMEM),
 L1 triggers, L2 clustering

contains common trigger tower information: energies,

transverse energies, clustering summary word.

detector-specific trigger tower
information (PMT sums).

L1Cal

main object of the calorimeter simulation,
it contains the array of trigger towers, arrays of
DIRAC boards and CRATESUM boards and
quantities resulting from the L1 simulation and L2
clustering and isolation algorithms.

18

Simona Rolli
Tufts University

MuonTrigger

MuonTriggerData

AbsEvent

MuonTriggerMaker

StorableObject

MuonPrimitive0MuonPrmitive1

MuonPrimitive2

1

0..*

1

1..*

1..*

1 1

1..*

AppModule

1

1

generates

1

1..*

CMU

main object of the Muon trigger simulation,
it contains arrays of muon primitives:

CMP

CMX

19

Simona Rolli
Tufts University

EXtremely Fast Tracker
Data from the Central Tracker (COT) are processed from each bunch crossing, and the result is

available in time to be used in the L1 trigger decision.
• The processor works off hit data from the 4 axial layers of the COT.Data from each wire is

classified as prompt or delayed (32K bits) depending on the
maximum drift in the COT.

• Track identification is accomplished in two steps:
the Finder and the Linker.

• Finder looks for high PT track segments in the SL
• Linker searches for match among segments

20

Simona Rolli
Tufts University

XFTSim

Finder System
Class

Linker System
Class

XFT System ClassMez. Card Class Database Class

21

Simona Rolli
Tufts University

Secondary Vertex Trigger

• Modular C code , with “board simulator” for each board
 C code needed to run the same simulators both from TRGSIM and in crate

controller CPU’s for online diagnostic.

• An A_C++ module provides the C simulators with Silicon raw data
information and XFT reconstructed tracks. It writes out a simulated
SVTD_StorableBank (identical to the hardware bank)

CDF decided to use impact
parameter information of the tracks in
the trigger to detect secondary
vertices as a tool to substantially
increase the physics reach of CDF:

22

Simona Rolli
Tufts University

Monitoring the trigger online

23

Simona Rolli
Tufts University

Monitoring the trigger online

• Each subsystem driver module contains
data monitors methods which check word
by word real and simulated banks, firing
error messages on the error logger and
on the standard output if discrepancy is
found:

 TC1D/TC2D_monitor (AbsEvent*
anEvent)

 XFFD/XFLD_monitor(AbsEvent* anEvent)
 XTRD_monitor(AbsEvent* anEvent)

SVTD_monitor(AbsEvent* anEvent)
 TCMD_monitor(AbsEvent* anEvent)

• Summary files produced for every run,
control on level of printing

• Easily coupled to the online ROOT-
based Consumer Framework (
HistoDisplayMain)

• Now also on the Web

24

Simona Rolli
Tufts University

The Steady State

• People are migrating to the LHC [and other experiments]

–This is not new, started a long time ago

• CDF has taken many measures to mitigate the impact on the experiment
–We have stabilized, streamlined and automated many tasks in operations
and in physics analysis

 Among these:
– Common Ntuples

– Calibration Tasks
– Efficiencies and Scale Factors

25

Simona Rolli
Tufts University

PerfIDia (Performance and ID instant answer)

The idea is to have much of analysis infrastructure at CDF running in
an automatic way to guarantee smooth running in the final years of
the experiment

Some aspects of all analyses are in common:
lepton ID efficiency,
reconstruction,trigger
Jet Energy corrections
B-tagging Scale factors
tau reconstruction
……

We are providing a common software framework which incorporates all the
relevant piece of code and produces output tables, plots and documentation
on the web for every new batch of processed data.
One coordinator (SR) and several experts on call.

26

Simona Rolli
Tufts University

Current Development

• Automatic tool to check data stability (high PT Leptons)
 All code in one common place (cvs)

• TopNt and StNtuple produced shortly after Production data is available:
target 4-6 weeks after Production. Turnover rate ~2.5 months.

• The ID code is launched to validate the new ntuples and determine the
various efficiencies and SF
 Dependency on several tasks:

 Good Run List
 Skimmed Data (to avoid large volumes of files)
 …

• Output is posted as plots and tables onto PerfIDia web page
• Joint Physics group does the final sign off

27

Simona Rolli
Tufts University

Example: Electron ID

28

Simona Rolli
Tufts University

Example: Electron ID

29

Simona Rolli
Tufts University

Conclusions

As a “software person”, during the lifecycle of CDFII, I have faced
various aspects of software projects:
 Exposure to new technologies

 New languages, new data access solutions, possibly commercial
 Involvement in long deliverable projects

 The Trigger Simulation project was a complex project, vital for the
rest of the experiment and involving several people at various stages

 Inventiveness
 evtNtuple was a way to provide early data analyzers with a simple

tool, easily portable outside of the more complex, still evolving
software framework

 Help and Support
 PerfIDia

30

Simona Rolli
Tufts University

Some more personal conclusions

• I definitely spent the best years of my career at FNAL, from
the hustle and bustle of the beginning of CDF Run II to its
current mature state.

 Somebody calls it service work, for me it was an opportunity to learn
new things while actually having fun
 …the hours spent in the control room during the commissioning run ..

 I came to appreciate “technical” work more and more as I found its
rewards more tangible than the elusive search for the God’s particle..
 …end of the day satisfaction for debugging that nasty line of code…

 Sense of team work and accomplishments has been invaluable

Backup Slides

32

Simona Rolli
Tufts University

CDF Trigger System

33

Simona Rolli
Tufts University

L1 Calo Trigger

This is a block diagram of the L1
calorimeter trigger

The dashed lines indicates
different cards

In the next page the software
rendition of the L1 (+L2
clustering) is reported.

Many of the boards functionality
have been emulated with simple
bit manipulating routines:

ADMEM card functionality has
been implemented as part of
the TriggerTower objects

DIRAC and CrateSum board
have been emulated as from the
online control code

34

Simona Rolli
Tufts University

L1 Calorimeter

Information from the tracker is used in the L1 calorimeters decision. Eight bits per
15o in ϕ are received through a front panel connector from XFT via the XTRP board
-8 bits refer to 8 thresholds in the XTRP board

The 8 bits are sent to three SRAMs that decode the information into 3 bits per
trigger tower

DIRAC can decode the information regardless of the meaning of the triggers used
to setup the thresholds (set the 8 bits)

The same data is sent to each DIRAC card on a φ slice. For a crate there are 32
(4x8) bits from XTRP per wedge. The information arrives at a time ttracking after the
bunch crossing

The ELPD chips resident on DIRAC are reprogrammable
via the ALTERA in-system programmability

35

Simona Rolli
Tufts University

Diagrams for DIRAC

Tower Module

36

Simona Rolli
Tufts University

The Tower Module
The 20 bits of energy in each tower come through the custom P3 module with transverse energy and
pedestal already subtracted. The 20 bits are divided in 10 bits of EM and 10 bits of HAD. One count
corresponds to 125 MeV.

These signals are grouped into a 120 bit bus (TOWIN: 119-0) and the bus is fanned out in 6 segments
and routed to the TOWLAT section within the Tower module.

The TOWLAT contains 6 ELPD chips which latch the input energies at a time tCalorimter. Each chip
represents a trigger tower, receiving 10 bits of EM and 10 bits of HAD data. Ability to mask off a tower is
provided (The masked tower will contribute 0 energy)
Via the FTOWERS(119:0) bus the two 10-bit energies are sent to L2 boards.

8 of the 10 EM bits are used in a later L1 decision (via TOWEM(47:0) bus)
The choice of which 8 bits are used is determined by the state of the Tower Granularity bit in the control registers.

A crude measure of the hadron energy is provided by LSBHAD(17:0), using the 3 or next to three LSBs
(choice regulated by another bit in the control registers). These bits are used to make a rough cut on the
hadron energy in a tower for electron triggers.

The two 10 bits data words input to TOWLAT are summed into an 8 bit work which is the total energy of
the trigger tower (in case of overflow, all the bits are turned on, ie full scale)
TOWTOT(47:0) is the collection of all the 6 chips total energies.

TOWTOT, TOWEM, LSBHAD are fed to the AL_FIFO section for time alignment with the tracking bits
The outoup is TOTOUT, EMOUT and LSBOUT are sent to the Decision section.

37

Simona Rolli
Tufts University

Decisions

The outputs from AL_FIFO are sent to the Decision section
Decision also accepts an 18 bits but (TR(17:0)) from the track section

Twelve (EM+TOT) SRAM’s receives the 4 busses and make the trigger
decision

For each trigger, one SRAM looks at the TOWTOT and TR and generates
the 8 jet triggers decisions. The other SRAM generates the eight
electromagnetic trigger decisions. These decision are combined into the
CSUM(95:0) bus.
There are 16 decisions per trigger tower for a total of 96 bits. However
there are only 13 L1 trigger bits available for global decision, so the
reduction from 16 to 13 is done in the CSUM section.
The CSUM is sent to two modules: CardSum and DAQ.
In DAQ the events are stored while waiting for the L2 decision.

